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Abstract 

Multimodal Lamb wave dispersion curves are measured and analyzed to obtain elastic stiffness 
parameters and thickness of concrete plate structures. With a simple and cost effective field procedure 
and by utilizing the Multichannel Analysis of Surface Waves (MASW) processing technique, the 
characteristics of the different modes in experimental Lamb wave dispersion curves can be measured. 
Lamb waves are guided dispersive waves propagating in plate structures. By matching theoretical Lamb 
wave dispersion curves with experimental dispersion curves, Young’s modulus, Poisson’s ratio, and the 
thickness of the tested structure can be evaluated. A theoretical background with dispersion equations is 
given along with a practical guide to generate theoretical dispersion curves. Since these pure Lamb wave 
dispersion curves are only dependent on the plate parameters, the frequency and the phase velocity can 
be normalized with respect to shear wave velocity and the thickness of the plate. This reduces the 
calculations during the matching procedure, and one only need to rescale the normalized axis of the 
dispersion curves to match theoretical and experimental dispersion curves. With a sensitivity analysis we 
give some recommendations on the matching procedure. The proposed analysis scheme is demonstrated 
using a case study on a concrete bridge support. Available reference data is in good agreement with the 
evaluated parameters from the presented analysis scheme. 

 
Introduction 

Non-destructive testing (NDT) of civil infrastructures is an important part of maintenance, risk 
analysis and verification of new structures. Seismic wave based testing techniques have the advantage of 
measuring fundamental elastic properties (i.e. seismic velocities), by affecting a representable volume in 
a non-destructive manner. Dynamic Young’s modulus (E) and Poisson’s ratio (ν) can be directly 
calculated from measured seismic velocities by using fundamentally correct relationships.  

Lamb waves (Lamb, 1917) are guided dispersive waves propagating in free plate structures. By 
matching theoretical multimodal Lamb wave dispersion curves with experimental ones, shear wave 
velocity (VS), Poisson’s ratio, and thickness of the tested plate structure can be evaluated. Lamb waves 
are commonly used in ultrasonic NDT applications including material characterization of elastic plates 
(Rogers, 1995), viscoelastic plates (Dean, 1989), bonding inspection (Wu and Liu, 1999), coating 
inspection (Lee and Cheng, 2001), defect inspection (Gilchrist, 1999), and thickness measurements of 
thin films (Pei et al., 1995). 

In NDT of infrastructures Lamb-wave-based testing techniques for concrete slabs and pavements 
were proposed already in the 1940’s. Picket (1945) presented a theoretical analysis on the application of 
Lamb waves for non-destructive testing of concrete slabs. In the following years several publications 
reported on this approach and showed promising results (Jones, 1955; Jones 1962; Vidale, 1964; Jones 
and Thrower, 1965). A key issue for civil engineering applications using Lamb wave testing techniques 
is whether the free plate boundary conditions are fulfilled. Naturally concrete slabs and pavement 
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asphalt layers are in contact with granular base or subgrade/fill material. Several researchers have been 
investigating this question and studies indicate that Lamb waves are the prevailing type of stress waves 
generated with their dispersion characteristics little different from the pure (traction-free on both sides) 
Lamb case. This theory seems valid as far as the stiffness of the underlying layer is a fraction of the 
stiffness of the plate (Jones and Thrower, 1965; Martincek 1994; Ryden et al., 2002b). In early concrete 
and pavement applications using Lamb waves the measuring technique, the steady-state surface wave 
method, was time consuming and the analysis scheme was limited to the fundamental anti-symmetric 
mode of propagation because the method was not utilizing the multichannel recording and analysis 
concepts. 

In this paper a practical approach for NDT of pavements and concrete structures utilizing 
multiple modes of Lamb wave dispersion curves is presented. Both the measuring procedure and the 
analysis scheme is described. A complete description of how to calculate theoretical multimodal Lamb 
wave dispersion curves is given. The main difference from the original approach presented by Jones 
(1955) is that measurements can now be made in the level of multimodal nature of Lamb waves in 
which the dispersion of individual modes are identified through a 2D (time and space) wave field 
transformation. Also, the entire procedure of testing can be finished within a couple of minutes instead 
of hours and with significantly cheaper equipment. Both measurements and analysis are made on the 
same portable computer and the recorded data can be evaluated directly in the field to obtain the final 
result. 

 
Theoretical Lamb wave dispersion curves 

Pure Lamb waves are guided dispersive waves propagating in an elastic isotropic plate with 
traction free boundaries, Figure 1. Lamb waves are formed by interference of multiple reflections and 
mode conversion of longitudinal waves (P-waves) and shear waves (S-waves) at the free surfaces of the 
plate (Viktorov, 1967). 

 

 
Figure 1. Schematic representation of plate and coordinates. 

 
 
Lamb waves with particle displacement in both the x- and y-direction actually represents a group 

of wave types including the bending wave, the Rayleigh wave, and the quasi-longitudinal wave. Lamb 
(1917) derived the dispersion equation that can handle the transitions between these types of waves. 
Harmonic wave propagation in the x-direction is only possible for those combinations of frequency (f) 
and phase velocity (c) corresponding to standing waves in the thickness y-direction. These waves must 
obey the dispersion equation (Lamb, 1917), from which dispersion curves can be calculated. 
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The ± sign on the exponent of the right term of equation 1 represents symmetric (+) and anti-

symmetric (-) type of wave propagation with respect to the middle of the plate, Figure 2. The other terms 
are wave number (k=ω/c) where ω is circular frequency (ω=2πf); thickness (d); longitudinal wave 
velocity (VP); and shear wave velocity (VS). 

Equation 1 represents the dispersion relation for pure Lamb waves with particle motion in both 
the x- and the y-direction. Although, the equation was derived long ago and looks quite simple, 
calculating roots for dispersion curve generation can be challenging, especially in some regions of wave 
number and frequency (Graff, 1975). Therefore further insight into the practical dispersion curve 
calculation is given next. 

The dispersion relation is a transcendental function and it not straightforward to calculate a k 
value at any given frequency. A root searching technique has to be used to find the right wave numbers 
at any given frequency. In general roots are complex, but if only propagating waves are studied the 
imaginary component can be ignored (Achenbach, 1998). In Figure 3 the absolute value of the anti-
symmetric function has been plotted as a function of real wave numbers at frequencies of 1 and 10 kHz. 
In this example the plate thickness is 0.2 m, VP=1581 m/s, and VS=1000 m/s. Roots are visible as 
minima in the absolute function value. 

 

 
Figure 2. Mode shapes of (a) symmetric and (b) anti-symmetric Lamb wave propagation, from  

Kuttruff (1991). 
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Figure 3. Absolute value of anti-symmetric dispersion equation at 1 kHz (upper) and 10 kHz (lower). 

Roots of the dispersion equation are visible as minima. The number of roots (at a given frequency) 
increases with increasing frequency. The anti-symmetric (A) mode numbers are numbered as, A0 

fundamental mode, and A1…A3 for higher modes. 
 
 
By extracting roots over a wide frequency range, dispersion curves of both symmetric (S) and 

anti-symmteric (A) Lamb waves can be studied. With the material properties given above, dispersion 
curves have been calculated up to the 2nd higher mode (A2 and S2), see Figure 4. A practicable 
technique when calculating dispersion curves from Equation 1 is to find the lowest frequency root of 
each mode first, and then use that root as a starting value. Some kind of minimization technique has to 
be used to find the exact root iteratively, keeping the frequency fixed and varying the wave number in 
small increments. When the lowest frequency root (first resonant wave number) at one frequency has 
been found with sufficient accuracy this wave number can be used as a starting value for the next 
frequency. This procedure is then repeated over the frequency range of interest. 

At the lowest frequencies (here <3 kHz) only the two fundamental modes A0 and S0 exists. In 
this frequency range the S0 dispersion curve approaches the quasi-longitudinal wave velocity, which is 
the P-wave velocity along the plate. The A0 dispersion curve approaches the bending wave velocity of 
the plate: 200 to 400 m/s at these low frequencies. At higher frequencies A0 and S0 approach the 
Rayleigh wave velocity of the plate. It can be shown analytically that Equation 1 reduces to the Rayleigh 
wave dispersion equation in a homogeneous half space when the frequency approaches infinity. 
Practically Rayleigh wave motion develops at about 10 kHz in this example; this is where A0 and S0 
merge together at the Rayleigh wave velocity. At these high frequencies and small wavelengths the 
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finite-thickness plate appears as a semi-infinite medium and wave propagation is limited to the regions 
closest to the surfaces. Higher modes develop at their respective cut-off frequency, which is related to 
the thickness of the plate (Graff, 1975). At higher frequencies all higher modes approach the shear wave 
velocity of the plate. It should also be noted that all symmetric modes have an almost straight part where 
the phase velocity is close to the quasi-longitudinal wave velocity. All these different types of waves and 
velocities are indicated on the same dispersion curves in Figure 5. As mentioned earlier, the axis on the 
dispersion curves can be normalized with respect to the plate properties. In Figure 5 the frequency axis 
is multiplied with the plate thickness (f*d) and the phase velocity axis is divided by the shear wave 
velocity of the plate (c/VS). 

 

 
Figure 4. Lamb wave dispersion curves for a free plate with VP=1581 m/s, VS=1000 m/s (ν=0.167), and 
a thickness of 0.2 m. In the frequency-phase velocity domain (left) mode numbers increase upward with 

higher phase velocities. In the frequency-wave number domain (right) mode number increase 
downwards with lower wave numbers (compare with Figure 2). 
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Figure 5. Lamb wave dispersion curves at a Poisson’s ratio of 0.167. Axes are normalized with respect 

to the shear wave velocity and thickness of the plate. The different types of wave propagation are 
indicated with arrows. 

 
 

Normalizing the axis with respect to the plate properties (as in Figure 5) significantly reduces 
computations when experimental dispersion curves are to be matched with theoretical dispersion curves. 
One only needs to calculate one set of dispersion curves at different Poisson’s ratios. These dispersion 
curves can then be used as a database during the matching procedure. Normalized dispersion curves at 
fixed Poisson’s ratios have been calculated by the authors and can be requested from 
nils.ryden@tg.lth.se. Very small increments of Poisson’s ratio are usually not necessary because the 
dispersion curves are not very sensitive to changes in Poisson’s ratio, which will be illustrated next. 

The dispersion equation (Equation 1) is highly non-linear with respect to the plate properties. 
This implies that different portions of the dispersion curves are not equally sensitive to the plate 
properties. In Figure 6a-d the effect of a 10% increase in shear wave velocity (Figure 6a), Poisson’s ratio 
(Figure 6b), E-modulus (Figure 6c), and thickness (Figure 6d) are displayed as dotted dispersion curves. 
The solid reference dispersion curves are the same as those used before. It should be noted that the low 
frequency range of A0 is not very sensitive to any of the plate properties. Still, this is the mode that has 
been used most widely in studies on seismic NDT of concrete plate structures and pavements. It is clear 
from Figure 6 that utilizing higher modes of lamb waves can increase the resolution of the results in 
terms of thickness and shear wave velocity or E-modulus. It can also be concluded that the Lamb wave 
dispersion curves are relatively insensitive to changes in Poisson’s ratio. Actually there is always a 
frequency at each dispersion curve that is not affected by Poisson’s ratio at all, termed Lamé modes 
(Graff, 1975). For the comparison on the sensitivity to changes in Poisson’s ratio it should, however, be 
noted that the effect increases slightly with higher Poisson’s ratios (here only 0.167). 
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Figure 6. Parametric study on the sensitivity of multimodal Lamb wave dispersion curves 

 on plate properties.  
 
 

Field method 

With a simple and cost effective field procedure and by utilizing the Multichannel Analysis of 
Surface Waves (MASW) processing technique (Park et al., 1998; Park et al., 1999) experimental Lamb 
wave dispersion curves can be measured. The multimodal nature of Lamb wave propagation implies that 
a transient source at the surface will easily generate multiple modes of propagation. Measured time 
histories along the surface will as a result be composed of a number of superposed modes. Therefore it is 
important that different modes of Lamb wave propagation can be delineate with a practical and cost 
effective approach. 

The Multichannel Simulation with One Receiver (MSOR) data acquisition technique is used to 
record data. In the MSOR data acquisition method a multichannel record is obtained with only one 
receiver. It is fixed at a surface point and receives signals from several hammer impacts at incremental 
offsets (Ryden et al., 2001). All recorded signals are then compiled to make an equivalent multichannel 
record for dispersion analysis. The Portable Seismic Acquisition System (PSAS) is used to collect this 
data (Ryden et al., 2002a). With this system the signal from each impact is automatically streamed to the 
hard drive of a portable computer and data can be collected with only fractions of a second between the 
impacts. A schematic description of the field set-up is shown in Figure 7. 
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Figure 7. Schematic description of the MSOR measurement set-up. 

 
 
The resulting multichannel record is automatically and objectively transformed to the frequency-

phase velocity domain with the MASW processing technique (Park et al., 1998). With this technique it 
is possible to extract multimodal dispersion curves from a multichannel (or multichannel equivalent) 
data set. All coherent phase velocity patterns are mapped with respect to their relative energy level. 
Therefore the result (phase velocity image) shows how the total seismic energy is distributed between 
different frequencies and phase velocities. By applying this processing technique on synthetic data (from 
a finite difference model), multimodal Lamb wave dispersion curves have been observed (Ryden et al., 
2002b). 

Finally the measured experimental Lamb wave dispersion curves are matched to theoretical 
dispersion curves. By changing VS, d, and ν, theoretical Lamb wave dispersion curves are matched 
manually or automatically to the high frequency dispersion curves in the phase velocity image. This 
whole procedure can be done in the field in a couple of minutes, provided that normalized dispersion 
curves have been calculated in advance as described in the previous section. The complete analysis 
scheme is exemplified next with a case study. 

 
Case study—concrete bridge 

Data was collected at an old concrete railroad bridge in Malmoe, Sweden. The investigated 
concrete bridge was tested along the vertical walls on the south and north supports. This data set has 
been presented earlier in Ryden et al. (2002c). Along with the non-destructive seismic test, core samples 
from the same locations were also taken. 

Following the MSOR method one accelerometer was located at zero offset (distance). While 
keeping the accelerometer at zero offset and by changing the impact points of the hammer from offset 
0.05 m to 2.00 m with 0.05 m impact separation, data were collected with the PSAS system. A small 
(0.22 kg) carpenter hammer was used as source. A steel spike was used as a source coupling device to 
minimize source statics, possible operator related offset errors, and to maximize the bandwidth of the 
generated stress waves. At each offset 5 impacts were stacked with the spike kept in a fixed position. 
After the last impact all individual traces are saved in a multichannel format as presented in Figure 8a. 

To evaluate phase velocities at each frequency, the time record has been automatically 
transformed to the frequency-phase velocity domain by using the MASW phase velocity analysis 
scheme (Park et al., 1998). Several energy crests, which represent different modes of Lamb wave 
propagation, are visible in the contour plot (Figure 8b). 

In Figure 8b the measured data is compared with theoretical Lamb wave dispersion curves 
corresponding to a 0.43 m thick free plate with a shear wave velocity of 2670 m/s and a Poisson’s ratio 
of 0.15. In this example only the fundamental modes of symmetric and anti-symmetric Lamb waves 
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have been fully resolved in the measurements. The higher modes S1, S2, A1, and A2 show only week 
energy in limited parts of the spectrum. Since the higher modes are more sensitive to changes in the 
material properties (see Figure 6) even these limited parts of the spectrum are useful when matching the 
measured dispersion curves with the theoretical dispersion curves. The density (ρ), 2400 kg/m3, has no 
effect on the dispersion curves of pure Lamb waves and is only used to calculate the E-modulus from VS 
and ν. The resulting dynamic E-modulus of the concrete support is calculated to 39.4 Gpa (Table 1) 
from Equation 4. 

 
( )νρ += 12 2

SVE              Eq. 4 
 

 
(a) (b) 

Figure 8. Result from the seismic field test at the north side of the investigated concrete bridge. In (a) 
the collected raw data is presented in a multichannel format, (b) shows the corresponding data in the 

frequency phase velocity domain, as it appears after the MASW transformation method. 
 
 
The presented result above was collected at the north support of the concrete bridge. The south 

support was also tested in a similar manner. Alongside the non-destructive seismic tests, core drillings 
were also conducted at the same locations. The cores were tested with the free-free resonant column 
method (Richart et al., 1970). A commercially available system, Grindosonic, was used for this test. In 
the free-free resonant test the seismic shear and compression wave velocities are indirectly evaluated 
from the longitudinal and torsional resonance frequencies of the sample. The resulting E and ν from this 
laboratory test are presented in Table 1 together with the results from the non-destructive field test.  

A comparison of the results shows a slightly higher modulus from the seismic MSOR field test. 
The discrepancy between the results could to some extent be related to the approximate geometrical 
correction factors used in the calculation of Young’s modulus from the measured resonant frequencies 
on the drilled cores. In this study the ASTM C1259-94 standard was used to calculate the presented 
material properties from the free-free resonant test. In Table 1 E and ν are presented both with and 
without the geometrical correction factor. In the field test pure Lamb wave dispersion curves from a free 
plate has been used to match the measured dispersion curves. In reality one side of the concrete wall is 
in contact with soil fill and as mentioned earlier this coupling is not accounted for. Another factor 
affecting the different methods is the difference in test volume between the two tests.  
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Table 1. Evaluated dynamic stiffness properties of the tested concrete. 
Location Destructive Grindosonic 

ASTM correction factors 
Destructive Grindosonic 
No correction factors 

Non-destructive 
MSOR field test 

 E (GPa) ν E (GPa) ν E (GPa) ν 
South side 40.7 0.18 42.9 0.18 43.6 0.20 
North side 37.3 0.15 39.9 0.15 39.4 0.15 
 
 

Discussion 

It is important to remember that pure Lamb wave dispersion curves are only valid strictly for an 
elastic isotropic plate in vacuum. In this pure case no energy is leaking into the surrounding medium. 
However, provided that the velocity contrast is large, like soil-concrete, it has been shown by several 
researchers that Lamb wave dispersion curves are practically not affected by the interface medium 
(Jones and Thrower, 1965; Martincek, 1994). Based on experimental tests Martincek (1994) concluded 
that normalized frequencies higher than a fd product of 0.15 times the phase velocity (fd > 0.15c) are 
practically not affected by coupling to a lower layer. But, nevertheless, the geometry of the structure 
should be as close to a free plate as possible. For more complex structures of irregular shape this 
simplified inversion technique is not possible. 

The usefulness of the presented method is related to the simple testing procedure and analysis. 
Testing in itself is a simple procedure. Approximately 10 minutes were spent on the data collection at 40 
different offsets from the receiver, and with the laptop at site the evaluation can be performed 
immediately. The calculated result can be seen as a mean value for the property of the concrete volume 
affected by the measured seismic waves. This gives more trustworthy information than the point 
estimates of the property gained by core drilling. It is also important to remember that the calculated 
response actually is a mean value based on every hammer blow that is measured. This implies that a 
standard deviation of the evaluated properties also can be estimated. Since reliability analysis is 
becoming a more and more common tool for assessment, the variability of the concrete is important. A 
smaller variability can be used to increase the safety of the structure. 

Evaluated dynamic stiffness properties of the concrete can be reduced to static values with 
known empirical relations (Nagy, 1997). From the static E-modulus it is also possible to estimate the 
compression strength. 

 
Conclusions 

With simple field measurements using one receiver and one source (MSOR) and by utilizing the 
MASW data processing method, multimodal Lamb wave testing can be performed directly in the field. 
Measuring shear and compression wave velocity in concrete is common for non-destructive test 
methods. The unique features that makes this method highly efficient is the simple and cost effective 
data acquisition and the ability to extract multimode dispersion curves in a robust and objective manner. 
The case study presented shows good agreement with data from more expensive tests based on core 
drillings. 

In this paper it has also been demonstrated how pure Lamb wave dispersion curves are calculated 
from the dispersion equation. This can be a tricky task and is therefore described in detail. However 
dispersion curves for a given Poisson’s ratio only need to be calculated once. By normalizing the axis of 
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the dispersion curves with respect to the shear wave velocity and the thickness of the plate, calculated 
dispersion curves can be used for any plate with any shear wave velocity and any thickness. Normalized 
dispersion curves at fixed Poisson’s ratios have been calculated by the authors and can be requested 
from nils.ryden@tg.lth.se. 
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